\qquad

Best Design of Prisms \& Cylinders

Name:

\qquad

MAXIMIZING THE VOLUME OF A CYLINDER

Recall: Formula for Volume of a Cylinder: \qquad

A cylinder with a fixed surface area will have the maximum (largest) volume when \qquad .
Rewrite the formula for Volume of a Cylinder with the change to the height above:

So...the formula for the maximized volume of a cylinder is \qquad

MINIMIZING THE SURFACE AREA OF A CYLINDER
Recall: Formula for Surface Area of a Cylinder: \qquad
A cylinder with a fixed volume will have the minimum (smallest) surface area when \qquad -. Rewrite the formula for Surface Area of a Cylinder with the change to the height above:

So...the formula for the minimized surface area of a cylinder is \qquad

Examples:

1. A cylinder is to be made with $3000 \mathrm{~cm}^{2}$ of sheet metal. Determine the dimensions (r and h) that would give the maximum volume for this cylinder.
2. Sara is a design engineer and must design a cylindrical portion of a regularly used tool. This tool must be able to contain 500 mL of oil (hint: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$). Find the dimensions of the cylinder that will use the least amount of metal (have the least surface area).

Recall: Formula for Volume of a Rectangular Prism: \qquad

A rectangular prism with a fixed surface area will have the maximum (largest) volume when \qquad .
Rewrite the formula for Volume of a Rectangular Prism with the change to the height above:

So...the formula for the maximized volume of a rectangular prism is \qquad
MINIMIZING THE SURFACE AREA OF A RECTANGULAR PRISM

Recall: Formula for Surface Area of a Rectangular Prism: \qquad

A rectangular prism with a fixed volume will have the minimum (smallest) surface area when \qquad _.
Rewrite the formula for Surface Area of a Rectangular Prism with the change to the height above:

So...the formula for the minimized surface area of a rectangular prism is \qquad

Examples:

1. Determine the dimensions of a rectangular prism with a maximum volume if its surface area must be 375 cm^{2}.
2. A rectangular prism must have a volume of $125 \mathrm{~m}^{3}$. What is the smallest surface area that is needed to create this box and what are its dimensions?

BEST DESIGN SUMMARY

Based on the investigations we have done around optimization, let's summarize our findings.

	Rectangle	
Minimum Perimeter	Occurs when	Formula
Maximum Area	Occurs when	Formula

	Cylinder	Rectangular Prism
Maximum Volume	Occurs when	Occurs when
	Formula	Formula
Minimum Surface Area	Occurs when	Occurs when

