(Part 1) Volume of Prisms, Cylinders and Cones

WARM-UP:

1 I CAN SOLVE PROBLEMS INVOLVING AREAS AND PERIMETERS OF COMPOSITE TWO-DIMENSIONAL SHAPES.
Determine the perimeter of the figure with an apothem of 5 cm and an area of $125 \mathrm{~cm}^{2}$.

I'm an
expert
I need a
bit more
practice
I will get
extra
help

CHECK-IN 1:

Feature	Prism	Cylinder	
Identify the faces in the figures.			
What shape are the faces?			
How many lateral faces are there?			
What is the formula for the volume of the shape?			

[^0]
CHECK-IN 2:

For which of the following shapes could the formula $V=A h$ work?
a)

b)

c)

Example 1:

A box is designed to fit packages of paper measuring $8.5^{\prime \prime} \times 11^{\prime \prime} \times 2.5^{\prime \prime}$. How many packages can fit in the box?

Example 2:

To build a silo with a height of 45.0 m and a volume of $5089.4 \mathrm{~m}^{3}$, what should the diameter be, to the nearest tenth of a metre?

Volume of a Cylinder is given by \qquad

Volume of Cone is given by

Describe the relationship between the volume of a cone and the volume of a cylinder:

Example 3:

Candy is sold in paper cones. The store owner wants to fit $600 \mathrm{~cm}^{3}$ of candy into a paper cone with a radius of 7 cm . How tall does each cone have to be, to the nearest centimetre?

Example 4:

A cone can be made by rotating a right triangle 360° about the right angle.
a) Determine the volume of the cone made by rotating the triangle about side $A B$.

b) Determine the volume of the cone made by rotating the triangle about side $B C$.

[^0]: *NOTE: These formulas only work if the faces are IDENTICAL and PARALLEL.

