\qquad

	Concept/Skill	Self Tracking	Practice Problems
0	Getting Ready		p.401\#1-11
1	I can solve problems involving areas and perimeters of composite two-dimensional shapes. Determine the perimeter of the figure with an apothem of 5 cm and an area of $125 \mathrm{~cm}^{2}$.	$\square \quad$ I'm an expert $\square \quad$ I need a bit more practice I will get extra help	$\begin{gathered} \text { p. } 406 \text { \#6-13, } \\ 17,23 \end{gathered}$
2	I can solve problems involving the volumes of prisms, cylinders, cones, pyramids, and spheres, including composite figures. a) The mould shown below is used to make a candle in the shape of a square-based pyramid. b) What is the volume of the mould?	\square I'm an expert I need a bit more practice I will get extra help	```(prism, cylinder) p.413-14 \#1-4, \(6-8,10,15\), 16 \\ (cone) \\ p.421-23 \#2a, 3b, 5, 7, 9, 11, 14, 15``` *Homework presentations
3	I can solve problems involving the volumes of prisms, cylinders, cones, pyramids, and spheres, including composite figures. a) Determine the volume of the cone. b) Determine the volume of space around the basketball.	$\square \quad$ I'man expert $\square \quad$ I need a bit more practice I will get extra help	(pyramid) p.421-23 \#1, 2bcd, 3a, 6, 8, 10, 12, 13, 16 (sphere) p.427-28 \#1, 2, 3ace, 4, 814, 16 *Homework presentations
4	I can determine the surface area of prisms, cylinders, pyramids, cones and spheres. a) Determine the surface area of the b) Determine the surface area of the basketball in \#2b above. pyramid in \#2a above.	\square I'man expert I need a bit more practice I will get extra help	(prism, cylinder) p. 433 \#2, 3, 6, 7, 9-11 (pyramid, cone, sphere) p. 439 \#4-6, 1011(odd) p. 455 \#1, 4, 5, 8 *Homework presentations
	QUIZ Skills 1-4 Thursday April $30^{\text {th }}$		

\qquad

Concept/Skill			Self Tracking	Practice Problems
6	I can determine the minimum perimeter of a rectangle given a fixed area. What is the shortest amount of fencing required to surround an area of $250 \mathrm{~m}^{2}$?		$\begin{array}{\|ll\|} \hline \square & \text { I'm an } \\ & \text { expert } \\ \square & \text { I need a } \\ & \text { bit more } \\ & \text { practice } \\ \square & \text { I will get } \\ \text { extra help } \end{array}$	Optimization Handout *Homework presentations
7	I can determine the maximum area of a rectangle given a fixed perimeter. What is the maximum area of garden you could edge with 50 m of edging?		$\begin{array}{\|ll} \square & \text { I'man } \\ & \text { expert } \\ \square & \text { I need a } \\ & \text { bit more } \\ & \text { practice } \\ \square & \text { I will get } \\ \text { extra help } \end{array}$	
	I can explain the significance of optimal area, surface area, or volume. a) When will a cylinder with a fixed volume b) When will a prism with a fixed have the minimum surface area? volume have the minimum surface area?		$\begin{array}{\|ll} \square & \text { I'man } \\ & \text { expert } \\ \square & \text { I need a } \\ & \text { bit more } \\ & \text { practice } \\ \square & \text { I will get } \\ \text { extra help } \end{array}$	(cylinder) p. 465 \#6ac, $7 \mathrm{ac}, 8,9$, 10(odd), 14 (prism) p. 471 \#35(odd), 6, 7, 810(odd)
9 I can solve problems involving maximizin a) Determine the dimensions of a cylinder that will minimize its LATERAL surface area if the volume is $785 \mathrm{~cm}^{3}$.		ng and minimizing measurements. b) Determine the dimensions of a prism with a maximum volume if the surface area is $216 \mathrm{~m}^{2}$.	$\begin{array}{\|ll} \square & \text { I'm an } \\ & \text { expert } \\ \square & \text { Ineed a } \\ & \text { bit more } \\ & \text { practice } \\ \square & \text { I will get } \\ \text { extra help } \end{array}$	*Homework presentations
10 Review	Review		p. 456 \#1-9 p. 477 \#1-4(odd) p. 479-80 \#8-12 (odd)	
			*Homework	presentations
Thursday, May $14^{\text {th }}, 2015$			Unit Study Notes Due!	

Other Important Dates:

- Thursday May $\mathbf{2 8}^{\text {th }}$ - Mock EQAO

- Friday May $29^{\text {th }}$ and Monday June $1^{\text {st }}-$ Mock EQAO returned and discussed
- Tuesday June 2 (booklet 1) \& Thursday June 4 (booklet 2) - EQAO (10% of final grade)
- Friday June $19^{\text {th }}, 8: 30$ am FINAL EXAM $)$ (20% of final grade)
© MARK ANDERSON

"All I'm saying is we plug these into Excel, let it do its thing, and then we can all play until lunch!"

