MPM1DI: UNIT 5 - Equation of a Straight Line

## Lesson 2: Knowing the Significance of $\mathbf{y}=\mathrm{mx}+\mathrm{b}$

Warm Up:

1. Identify the $y$-intercept (b) in each case:
a)

b)


## Finding Slope

Four other ways to think of $m$, besides "slope":

1) $\frac{\text { rise }}{\text { run }}$
2) $\frac{\text { difference in } y \text {-coordinates }}{\text { difference in } x \text {-coordinates }}$
3) $\frac{\Delta y}{\Delta x}$
4) $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Using Slope to Sketch Graphs

| $\frac{\text { rise }}{\text { run }} \quad$ Rise is the vertical distance is the horizontal distance |
| :--- |
|  |

Sketch lines with the following
slopes that have a y-intercept of 0:

1) 4
2) $\frac{1}{2}$
3) -2
4) $\frac{-3}{4}=\frac{3}{-4}$


If we know the coordinates of two points on a line, we can determine the slope of a line between them.
$\frac{\text { difference in } y \text {-coordinates }}{\text { difference in } x \text {-coordinates }} \quad \frac{\Delta y}{\Delta x} \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example 1) Find the slope for the following two points: $(3,6)$ and $(6,15)$

Example 2) Find the slope for the following two points: $(-6,4)$ and $(-2,6)$

Example 3) Find the slope for the following two points: $(4,12)$ and $(6,8)$

Graph examples 1-3 on the following graph. Assume y-intercept is $\qquad$


## Challenge:

1. Calculate the slope of the line between the $y$-intercept of -5 and the point $(2,1)$
2. Calculate the slope of the line between the $x$-intercept of 4 and the point $(1,3)$.

Homework: p 133 \#1-3, 5, 6

