\qquad
\qquad
\qquad

MCF 3M Practice Exam

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. What is the amplitude of the function $3 \sin (x-4)$?
a. 3
b. 2
c. 1
d. 4
\qquad 2. What is the shortest interval in which a periodic function will complete one cycle?
a. a period
c. an event
b. a wavelength
d. an action
\qquad 3. What is the amplitude of the function $5 \sin \left(4 x+30^{\circ}\right)+2$?
a. $4 x$
b. 5
c. 2
d. 30°
\qquad 4. Simplify and express with positive exponents: $\frac{\left(c^{\frac{3}{4}}\right)^{-\frac{1}{3}} c}{c^{\frac{1}{2}}}$.
a. $c^{\frac{7}{4}}$
b. $c^{\frac{5}{4}}$
c. $c^{\frac{3}{4}}$
d. $c^{\frac{1}{4}}$
\qquad 5. Use the discriminant to determine the number of roots of $x^{2}-3=(3 x-2)(x+7)$.
a. zero
c. two
b. one
d. three
\qquad 6. How often do peaks of a sinusoidal function occur?
a. once each period
c. twice each cycle
b. twice each period
d. once every 2 cycles
\qquad 7. What is the missing factor?
$-7 y+y^{2}-18=(?)(y+2)$
a. $y+9$
b. $y-6$
c. $y-7$
d. $y-9$
8. Write $27^{\frac{1}{3}}$ in radical form.
a. $\sqrt[3]{3}$
b. $\sqrt[\frac{1}{3}]{3}$
c. $\sqrt[3]{27}$
d. $\sqrt[\frac{1}{3}]{27}$
\qquad 9. A population of bacteria increases by 3.5% every day. What is the corresponding growth factor?
a. 1.035
b. 35
c. 0.35
d. 0.035
\qquad 10. The coordinates of the vertex of $y=(x-4)(x+2)$ are
a. $(-4,2)$
b. $(4,-2)$
c. $(1,-9)$
d. $(-9,1)$
11. Shankir borrowed money at an interest rate of $5.75 \% /$ a compounded semi-annually that he will pay back in 5 years' time. He will repay $\$ 5576.32$. How much money did he borrow?
a. $\quad \$ 5150$
b. $\$ 4200$
c. $\quad \$ 4450$
d. $\$ 4800$
12. A donor gives $\$ 40000$ to the university she graduated from. The amount must be invested for 4 years, and the accumulated interest will be used to buy supplies for the biology laboratories. If the money earns $7.25 \% / \mathrm{a}$ compounded monthly, how much will be available for the biology laboratories?
a. $\quad \$ 40975.46$
b. $\$ 53410.47$
c. $\quad \$ 52923.58$
d. $\$ 42892.32$
_- 13. A cup of coffee cools according to the equation $T(t)=65\left(\frac{1}{2}\right)^{\frac{t}{22}}+19$, where T is the temperature in ${ }^{\circ} \mathrm{C}$ after t minutes. Determine the temperature of the coffee after 30 minutes, to the nearest degree.
a. $25^{\circ} \mathrm{C}$
b. $\quad 19^{\circ} \mathrm{C}$
c. $\quad 44^{\circ} \mathrm{C}$
d. $33^{\circ} \mathrm{C}$
14. An exponential function has
a. equal first differences
c. finite differences that only increase
b. equal second differences
d. differences that change multiplicatively
15. State the type of transformation of $\sin x$ for the function $f(x)=4 \sin x$.
a. vertical stretch
c. horizontal stretch
b. vertical translation
d. horizontal translation
16. What is the expression for 8^{6} written as a base 2 power?
a. 2^{24}
b. 2^{10}
c. 2^{18}
d. 2^{9}
17. Darlene neglected to pay a credit card bill of $\$ 630$ at $18 \% / \mathrm{a}$., compounded daily, for 3 weeks after it was due. What is the amount she must pay to settle the bill at the end of the 3 weeks?
a. $\quad \$ 753.67$
b. $\$ 750.34$
c. $\quad \$ 970.20$
d. $\$ 636.56$
18. Determine the roots of $x^{2}-22 x+121=0$ to the nearest hundredth.
a. 11
c. 2 and 11
b. -11
d. no real solution
19. Calculate the total amount in an investment account if $\$ 2800$ was invested at a simple interest rate of 5.5% for 18 months.
a. $\quad \$ 3034.15$
b. $\$ 3031.00$
c. $\quad \$ 7340.11$
d. $\quad \$ 5544.00$
20. Tolu deposits $\$ 930$ in a savings account that pays compound interest annually. The table below shows his annual balance for this investment. What interest rate did the bank give Tolu?

Year	Final Balance (\$)
1	964.88
2	1001.06
3	1038.60
4	1077.54

a. 3.75%
b. 4%
c. 4.25%
d. 4.5%
21. The intensity of light n metres below the surface of water is given by $I(n)=I_{0}(0.98)^{n}$, where I_{0} is the intensity of light at the surface of the water. Due to cloud cover, the surface at a region of the ocean has an intensity of 92%. What is the intensity of light 28 metres below the surface in that region? Round your answer to the nearest tenth.
a. 9.7%
b. 52.3%
c. 9.5%
d. 56.8%
22. Determine which coordinate is the vertex of $f(x)=-2 x^{2}-20 x-15$ without graphing the parabola.
a. $(5,35)$
b. $(-5,35)$
c. $(-5,-40)$
d. $(-5,10)$
23. Which of the following is equivalent to $\frac{\left(t^{4}\right)^{6}}{t^{8}}$?
a. t^{16}
b. t^{2}
c. t^{3}
d. t^{10}
24. There are 5000 yeast cells in a culture. The number of cells grows at a rate of 20% per day. The function that models the growth of the yeast cells is $N(d)=N_{0}(1+r)^{d}$, where N is the number of yeast cells d days after the culture is started, N_{0} is the initial population, and r is the growth rate. Which of the following is a correct model for the yeast cell population?
a. $\quad N(d)=5000(1+0.2)^{d}$
b. $\quad N(d)=5000(0.2)^{d}$
c. $\quad N(d)=5000(1+20)^{d}$
d. $\quad N(d)=5000(20)^{d}$
25. Which shows the type of function matched with the correct degree?
a. linear; 2
c. linear; 0
b. quadratic; 4
d. quadratic; 2
26. Jerome would like to take a vacation to Costa Rica during March break, 9 months from today. The trip will cost $\$ 1860$. He plans on making 8 monthly payments into a fund with a rate of $5.4 \% /$ a compounded monthly. What size payment does he need to make in order to have enough money for the trip?
a. $\$ 227.06$
b. $\$ 228.86$
c. $\quad \$ 196.74$
d. $\$ 195.39$
27. The equation of the axis of the function $y=-2 \sin \left(x-30^{\circ}\right)+3$ is
a. $\quad \mathrm{x}=-2$
b. $y=2$
c. $x=3$
d. $y=3$
28. If the point $(-2,-3)$ is on the graph of $y=f(x)$, what is the value of $f(-2)$?
a. -3
b. -2
c. 0
d. 3
29. Which of the following is equivalent to $\frac{1}{9^{-4}}$?
a. $-\frac{1}{36}$
b. 9^{4}
c. -9^{4}
d. -36
30. A function g is defined by $g(x)=x^{2}-9 x+18$. Evaluate $\mathrm{g}(2 \mathrm{n})$.
a. $2 n^{2}-18 n+18$
b. $\frac{n^{2}}{2}-\frac{9}{2} n+9$
c. $4 n^{2}-36 n+18$
d. $2 n^{2}-36 n+18$
31. Nancy can see four buildings from where she is standing. Given the following angles of elevation to the top of each building and her distance from the base of each building, which is the tallest?
a. $36^{\circ}, 53 \mathrm{~m}$
b. $52^{\circ}, 36 \mathrm{~m}$
c. $47^{\circ}, 40 \mathrm{~m}$
d. $58^{\circ}, 28 \mathrm{~m}$
32. Write $(\sqrt{36})^{5}$ in exponential form.
a. $36^{\frac{5}{2}}$
b. $36^{\frac{2}{5}}$
c. $6^{\frac{2}{5}}$
d. $6^{\frac{5}{2}}$
33. What is the missing factor?
$27 k^{2}+18 k+3=3(?)^{2}$
a. $2 x+1$
b. $x+3$
c. $9 x+6$
d. $3 x+1$
34. What can be modelled by a sinusoidal function?
a. the temperature of a cooler with respect to time
b. the motion of a kite with respect to time
c. the balance of a mortgage with respect to time
d. the height of a boy on a swing with respect to time
35. Which function includes a translation of 3 units to the left?
a. $\quad f(x)=(x+3)^{2}+1$
b. $f(x)=3 x^{2}+1$
c. $f(x)=(x-3)^{2}+1$
d. $\quad f(x)=(x+1)^{2}-3$
36. A quadratic function in standard form will have one real root when
a. $\quad b^{2}-4 a c>0$
b. $\quad b^{2}-4 a c<0$
c. $b^{2}-4 a c=0$
d. $a^{2}-4 b c>0$
37. In about how many years will $\$ 700$ grow to $\$ 1200$ if it is invested at 7% compounded annually?
a. 5
b. 6
c. 7
d. 8

38. Using the figure above and the given values for $\angle C$ and a, determine which would have the largest side c.
a. $\angle C=43^{\circ}, a=24 \mathrm{~cm}$
b. $\angle C=52^{\circ}, a=23 \mathrm{~cm}$
c. $\angle C=49^{\circ}, a=25 \mathrm{~cm}$
d. $\angle C=46^{\circ}, a=26 \mathrm{~cm}$

39. Given the figure above, if $l=3.4, \angle J=28^{\circ}$, and $j=3.2$, use the sine law to determine $\angle L$ to the nearest degree.
a. 60°
b. 30°
c. 27°
d. 26°
40. The relation that is not a function is
a. $\{(-1,5),(0,6),(3,10),(4,-1)\}$
b. $\quad\{(2,-5),(5,-7),(2,-9),(7,0)\}$
c. $\{(1,2),(2,3),(3,2),(4,1)\}$
d. $\{(-5,0)\}$
41. Temperature and elevation are related. The average temperature at the summit of Mount Everest in July is 19 ${ }^{\circ} \mathrm{C}$. The average Temperature at the Khumbo Glacier Base Camp in July is $-3^{\circ} \mathrm{C}$. Which is the dependant variable?
a. temperature
c. elevation
b. location
d. mountain
42. Functions of the form $g(x)=a(x-h)^{2}$ can be graphed by applying the appropriate transformations, one at a time, to the graph of
a. $f(x)=2 x$
b. $\quad f(x)=x^{2}$
c. $f(x)=(x-1)^{2}$
d. $f(x)=x+2$
43. A volleyball is hit straight upward. The graph shows its height, $h(t)$, in metres, at time t. Which is the function, in factored form, that estimates the height of the volleyball at any given time?

a. $x(x-2)$
b. $-5 x(x+2)$
c. $-5(x-2)$
d. $-5 x(x-2)$
44. A skateboard company models its profit with the function $P(x)=-2 x^{2}+13 x-15$, where x is the number, in thousands, that the company sells, and $P(x)$ is the profit in tens of thousands of dollars. How many skateboards must the company sell to break even? Use factoring to solve.
a. at 1500 and 5000 skateboards
c. at 1.5 and 5 skateboards
b. at 150 and 500 skateboards
d. at 1500 and 50000 skateboards

Short Answer

45. What are the domain and range of the function?

46. The graph of $y=f(x)$ is shown below. Evaluate $f(7)$.

47. Name a function to describe each graph.

GRAPH A

GRAPH B

48. What are the domain and range of $h(x)=-(x-2)^{2}+3$?
49. Factor the polynomial fully.
$-6 x^{2}-15 x+9$
50. Factor the polynomial.
$y^{2}-7 y-30$
51. Draw a rectangle with an area of $x^{2}-9 x-36$. Label the dimensions.
52. Express the quadratic function in standard form.
$f(x)=-(x-2)(x-4)$
53. For the quadratic function below, determine the coordinates of the vertex without graphing. $g(x)=(2 x+1)(x-2)$
54. A football is kicked into the air. The height of the football is modelled by $h(t)=-5 t^{2}+16 t+1$, where $h(t)$ is the height in metres and t is the time in seconds from its release. When will the football first reach a height of 13 metres?
55. At a craft store, the weekly revenue function for floral wire sold can be modelled with $R(w)=-2 w^{2}+20 w+2400$, where both the revenue $R(x)$, and the cost, w, of a roll of floral wire are in dollars. According to the model, what cost will give the maximum revenue?
56. John hits a golf ball into the ocean from a cliff that is 90 metres high. The function $h(t)=-5 t^{2}+15 t-90$ gives the approximate height of the golf ball above the water, where $h(t)$ is the height in metres and t is the time in seconds. When will the ball hit the water?
57. Use factoring to solve $-x^{2}-x+12=0$. Show your work.
58. Write the factored and standard forms for a quadratic equation with x-intercepts of -5 and -3 and a y-intercept of 1.8 .
59. Does the function $f(x)=-2(x+6)^{2}+1$ have a maximum or a minimum value? Explain how you decided.
60. Write the function $f(x)=3(x+6)^{2}-7$ in standard form.
61. Write the equation of the quadratic function in vertex and standard form whose vertex is at $(-1,6)$ and that passes through $(2,24)$.
62. Factor $x^{2}-16 x+64$.
63. Complete the square on $y=x^{2}-16 x-10$.
64. Complete the square on $y=4 x^{2}+24 x-13$.
65. Complete the square to write the function $f(x)=-2 x^{2}+5 x-16$ in vertex form. State the vertex.
66. Use the quadratic formula to solve $-8 x^{2}-5 x+3=0$. Round your answer to two decimal places. If there is no real solution, say so.
67. Use the quadratic formula to solve $12 x^{2}+4 x+13=0$. Round your answer to two decimal places. If there is no real solution, say so.
68. The graph shows the height of a football that is kicked for a field goal, where time, t, is in seconds and height, $h(t)$, is in metres. Use the graph to determine an algebraic model.

69. A quadratic function has a vertex located at $(2,-8)$ and a y-intercept of -18 . Write the standard form of the quadratic equation.

70. If sides $\overline{L M}$ and $\overline{M N}$ of triangle $L M N$, in the figure above, are 15 cm and 24 cm , respectively, and angles $\angle L$ and $\angle N$ are 49° and 28°, respectively, what is length d ? Round your answer to the nearest centimetre.

71. Given the figure above, if $\angle Y=56^{\circ}, \angle Z=68^{\circ}$, and $\mathrm{y}=24 \mathrm{~cm}$, what are the other two sides of triangle $X Y Z$ to the nearest tenth of a centimetre?
72. Solve the triangle given below. Round lengths to the nearest tenth of a centimetre and angles to the nearest degree.

73. Using triangle $A B C$, if $a=6.75 \mathrm{~cm}$, and $c=7.50 \mathrm{~cm}$, and $\angle B=35^{\circ}$, solve the triangle using the cosine law. Round lengths to the nearest hundredth of a metre and angles to the nearest degree.

74. What is the period of the function? How many cycles are shown?

75. What is the amplitude of the graph? What is the equation of the axis?

76. Find the amplitude, period and equation of axis of the sinusoidal function.

77. Simplify. Write as a single power: $\frac{\left(3^{4}\right)^{3}}{3^{7}\left(3^{2}\right)}$.
78. Simplify: $b^{8}\left(b^{7}\right)^{3}$.
79. Simplify, and write as a single power with a positive exponent: $\left(\frac{9}{9^{-3}}\right)^{3}\left(\frac{9^{4}}{9^{-2}}\right)$.
80. Simplify and write as a single power with a positive exponent: $\frac{c^{-3}\left(c^{7} c^{3}\right)^{-1}}{c^{-2} c^{8}}$.
81. Simplify, and express using positive exponents: $\left(\left(w^{-12}\right)^{-\frac{1}{3}}\right)^{\frac{3}{4}}$.
82. Write $\sqrt[4]{256^{3}}$ in exponential form.
83. Write (216) ${ }^{\frac{2}{3}}$ in radical form.
84. An antique car was purchased for $\$ V_{0}$ in 1985. It appreciates in value by 2.85% each year. Write an equation that models V, the value of the car, in t years since 1985.
85. A rubber ball is dropped from a height of 10 m . It bounces to a height that is 85% of its previous maximum height after each bounce. After how many bounces will the height of the ball be about 5 m ?
86. Light intensity in a lake is reduced by 9% per metre of depth, relative to the light intensity at the surface. What is the light intensity 18 m below the surface of the lake? Round your answer to the nearest hundredth of a percent.
87. Calculate the simple interest due at the end of 30 months if $\$ 10575$ is borrowed at a rate of 3.75%.
88. Gwen wants her investment to be worth $\$ 12000$ in 5 years. The bank will give her $7 \% /$ interest compounded annually. How much does Gwen have to invest now? Round your answer to the nearest cent.
89. Brian took out a loan of $\$ 5500$ for his university tuition. How much will he have to pay back at the end of 4 years if the interest on the loan is $7.9 \% /$ a compounded semi-annually?
90. Jocelyn wants to build up a fund of $\$ 24000$ over the next 5 years for a down payment on a townhouse. She wants to make regular quarterly deposits into an account that earns $5 \% /$ compounded quarterly. How much should she deposit every 3 months?
91. How much should be deposited into an account to set up an annuity that will provide equal payments of $\$ 140$ every 3 months over the next 7 years? The annuity will earn $6.2 \% /$ a compounded quarterly.

Problem

92. a) Factor the expression $6 x^{2}-4 x+3 x y-2 y$.
b) How can grouping the terms in this expression help with factoring?
93. List the five key values of $f(x)=\sin x$ as ordered pairs (x, y) and sketch the function using these points.
94. Sketch a graph of the function $\sin \left(x-45^{\circ}\right)+2$.
95. Sketch a graph of the function $f(x)=-2 \sin x$.

MCF 3M Practice Exam

Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 6.6-More Transformations of $\sin \mathrm{x}: \mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}$
2. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 6.2 - Periodic Behaviour
3. ANS: B PTS: 1 REF: Knowledge and Understanding OBJ: 6.6-More Transformations of $\sin \mathrm{x}: \mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}$
4. ANS: D PTS: 1 REF: Knowledge and Understanding

OBJ: 7.4 - Working with Rational Exponents
5. ANS: C PTS: 1 REF: Knowledge and Understanding OBJ: 4.4 - Investigating the Nature of the Roots
6. ANS: A PTS: 1 REF: Knowledge and Understanding OBJ: 6.4 - Comparing Sinusoidal Functions
7. ANS: D PTS: 1 REF: Knowledge and Understanding OBJ: 2.3 - Factoring Quadratic Expressions: $x^{\wedge} 2+b x+c$
8. ANS: C PTS: 1 REF: Knowledge and Understanding OBJ: 7.4 - Working with Rational Exponents
9. ANS: A PTS: 1
10. ANS: C PTS: 1
11. ANS: B PTS: 1 REF: Application OBJ: 8.3 - Compound Interest: Determining Present Value
12. ANS: B PTS: 1 REF: Application

OBJ: 8.2 - Compound Interest: Determining Future Value
13. ANS: C PTS: 1 REF: Knowledge and Understanding OBJ: 7.7 - Problems Involving Exponential Decay
14. ANS: D PTS: 1
15. ANS: A PTS: 1 REF: Knowledge and Understanding OBJ: 6.6 - More Transformations of $\sin \mathrm{x}: \mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}$
16. ANS: C PTS: 1 REF: Knowledge and Understanding OBJ: 7.2-The Laws of Exponents
17. ANS: D PTS: 1 REF: Thinking OBJ: 8.2 - Compound Interest: Determining Future Value
18. ANS: A

PTS: 1
REF: Knowledge and Understanding
OBJ: 4.3 - Solving Quadratic Equations Using the Quadratic Formula
19. ANS: B PTS: 1 REF: Knowledge and Understanding OBJ: 8.1 - Investigating Interest and Rates of Change
20. ANS: A PTS: 1 REF: Thinking

OBJ: 8.2 - Compound Interest: Determining Future Value
21. ANS: B PTS: 1 REF: Knowledge and Understanding

OBJ: 7.7 - Problems Involving Exponential Decay
22. ANS: B PTS: 1 REF: Knowledge and Understanding OBJ: 4.2 - Relating the Standard and Vertex Forms: Completing the Square
23. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 7.2-The Laws of Exponents
24. ANS: A PTS: 1 REF: Communication

OBJ: 7.6-Solving Problems Involving Exponential Growth
25. ANS: D PTS: 1 REF: Knowledge and Understanding

OBJ: 1.2 - Comparing Rates of Change in Linear and Quadratic Functions
26. ANS: B PTS: 1 REF: Application

OBJ: 8.5 - Regular Annuities: Determining Future Value
27. ANS: D PTS: 1
28. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 1.3-Working with Function Notation
29. ANS: B PTS: 1 REF: Knowledge and Understanding

OBJ: 7.3-Working with Integer Exponents
30. ANS: C PTS: 1 REF: Knowledge and Understanding

OBJ: 1.3-Working with Function Notation
31. ANS: B PTS: 1 REF: Thinking

OBJ: 5.1-Applying the Primary Trigonometric Ratios
32. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 7.4-Working with Rational Exponents
33. ANS: D PTS: 1 REF: Knowledge and Understanding

OBJ: 2.5 - Factoring Quadratic Expressions: Special Cases
34. ANS: D PTS: 1 REF: Application

OBJ: 6.3 - Investigating the Sine Function
35. ANS: A PTS: 1 REF: Knowledge and Understanding

OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
36. ANS: C PTS: 1
37. ANS: D PTS: 1 REF: Thinking

OBJ: 8.2-Compound Interest: Determining Future Value
38. ANS: B PTS: 1 REF: Thinking

OBJ: 5.1-Applying the Primary Trigonometric Ratios
39. ANS: B PTS: 1 REF: Application

OBJ: 5.3 - Investigating and Applying the Sine Law in Acute Triangles
40. ANS: B PTS: 1
41. ANS: A PTS: 1 REF: Application

OBJ: 1.1-The Characteristics of a Function
42. ANS: B PTS: 1 REF: Knowledge and Understanding

OBJ: 1.6-Using Multiple Transformations to Graph Quadratic Functions
43. ANS: D PTS: 1 REF: Application

OBJ: 3.2 - Relating the Standard and Factored Forms
44. ANS: D PTS: 1 REF: Application

OBJ: 3.5-Solving Problems Involving Quadratic Functions

SHORT ANSWER

45. ANS:
$\mathrm{D}=\{0,1,2,3,4,5,6\}$
$\mathrm{R}=\{0,1,2,3\}$
PTS: 1 REF: Knowledge and Understanding
OBJ: 1.1-The Characteristics of a Function
46. ANS:

9
PTS: 1 REF: Knowledge and Understanding
OBJ: 1.3-Working with Function Notation
47. ANS:

Answers may vary. For example:
Graph A: $f(x)=-x^{2}+2$
Graph B: $g(x)=(x-3)^{2}-1$

PTS: 1
REF: Thinking
OBJ: 1.5 - Graphing Quadratic Functions by Using Transformations
48. ANS:
$\mathrm{D}=\{x \in \mathbf{R}\}$
$\mathbf{R}=\{y \leq 3 \mid y \in \mathbf{R}\}$
PTS: 1 REF: Knowledge and Understanding
OBJ: 1.7-The Domain and Range of a Quadratic Function
49. ANS:
$-3(2 x-1)(x+3)$
PTS: 1 REF: Knowledge and Understanding OBJ: 2.2 - Factoring Polynomials: Common Factoring
50. ANS:
$(y-10)(y+3)$
PTS: 1 REF: Knowledge and Understanding
OBJ: 2.3 - Factoring Quadratic Expressions: $x^{\wedge} 2+b x+c$
51. ANS:

PTS: 1
REF: Communication
OBJ: 2.3 - Factoring Quadratic Expressions: $x^{\wedge} 2+b x+c$
52. ANS:
$-x^{2}+6 x-8$
PTS: 1 REF: Knowledge and Understanding
OBJ: 3.2 - Relating the Standard and Factored Forms
53. ANS:
(0.75, -3.125)

PTS: 1 REF: Knowledge and Understanding
OBJ: 3.2 - Relating the Standard and Factored Forms
54. ANS:
1.2 s

PTS: 1 REF: Application OBJ: 3.3-Solving Quadratic Equations by Graphing
55. ANS:
\$5
PTS: 1 REF: Application OBJ: 3.4 - Solving Quadratic Equations by Factoring
56. ANS:

6 s
PTS: 1 REF: Application OBJ: 3.4-Solving Quadratic Equations by Factoring
57. ANS:
$x=-4$ and $x=3$
$-\left(x^{2}+x-12\right)$
$-(x-4)(x+3)$
PTS: 1 REF: Knowledge and Understanding
OBJ: 3.5 - Solving Problems Involving Quadratic Functions
58. ANS:
$y=0.12(x+5)(x+3)$
$y=0.12 x^{2}+0.96 x+1.8$
PTS: 1 REF: Knowledge and Understanding
OBJ: 3.6 - Creating a Quadratic Model from Data
59. ANS:

It has a maximum because $a<0$.
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.1 - The Vertex Form of a Quadratic Function
60. ANS:
$f(x)=3 x^{2}+36 x+101$
PTS: 1 REF: Knowledge and Understanding OBJ: 4.1 - The Vertex Form of a Quadratic Function
61. ANS:

Vertex form: $f(x)=2(x+1)^{2}+6$; Standard form: $f(x)=2 x^{2}+4 x+8$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.1 - The Vertex Form of a Quadratic Function
62. ANS:
$(x-8)^{2}$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.2 - Relating the Standard and Vertex Forms: Completing the Square
63. ANS:
$y=(x-8)^{2}-74$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.2 - Relating the Standard and Vertex Forms: Completing the Square
64. ANS:
$y=4(x+3)^{2}-49$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.2 - Relating the Standard and Vertex Forms: Completing the Square
65. ANS:
$f(x)=-2\left(x-\frac{5}{4}\right)^{2}-\frac{103}{8} ;\left(\frac{5}{4},-\frac{103}{8}\right)$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.2 - Relating the Standard and Vertex Forms: Completing the Square
66. ANS:
-1 and 0.38
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.3 - Solving Quadratic Equations Using the Quadratic Formula
67. ANS:
no real solution
PTS: 1
REF: Knowledge and Understanding
OBJ: 4.3 - Solving Quadratic Equations Using the Quadratic Formula
68. ANS:
$h(t)=-5(t-2)^{2}+20$
PTS: 1 REF: Application OBJ: 4.5-Using Quadratic Function Models to Solve Problems
69. ANS:
$y=-2.5 x^{2}+10 x-18$
PTS: 1 REF: Knowledge and Understanding
OBJ: 4.6 - Using the Vertex Form to Create Quadratic Function Models from Data
70. ANS:

31 cm
PTS: 1 REF: Application OBJ: 5.2-Solving Problems by Using Right-Triangle Models
71. ANS:
$z=26.8 \mathrm{~cm}$
$x=24.0 \mathrm{~cm}$
PTS: 1 REF: Application
OBJ: 5.3 - Investigating and Applying the Sine Law in Acute Triangles
72. ANS:
$\angle M=74^{\circ}$
$\angle N=41^{\circ}$
$L M=54.2 \mathrm{~cm}$
PTS: 1 REF: Application
OBJ: 5.3 - Investigating and Applying the Sine Law in Acute Triangles
73. ANS:
$b=4.34 \mathrm{~cm}$
$\angle A=63^{\circ}$
$\angle C=82^{\circ}$
PTS: 1 REF: Application
OBJ: 5.4 - Investigating and Applying the Cosine Law in Acute Triangles
74. ANS:

The period of the function is 1 . There are 4 cycles.
PTS: 1 REF: Application OBJ: 6.2-Periodic Behaviour
75. ANS:

The amplitude is 4 . The equation of the axis is $y=10$.
PTS: 1 REF: Thinking OBJ: 6.3-Investigating the Sine Function
76. ANS:

The amplitude is 2 , the period is 1 and the equation of the axis is $y=3$.
PTS: 1
REF: Knowledge and Understanding
OBJ: 6.4 - Comparing Sinusoidal Functions
77. ANS:
3^{3}
PTS: 1
REF: Knowledge and Understanding
OBJ: 7.2-The Laws of Exponents
78. ANS:
b^{29}
PTS: 1
REF: Knowledge and Understanding
OBJ: 7.2-The Laws of Exponents
79. ANS:
9^{18}
PTS: 1 REF: Knowledge and Understanding
OBJ: 7.3-Working with Integer Exponents
80. ANS:
$\frac{1}{c^{19}}$
PTS: 1 REF: Knowledge and Understanding OBJ: 7.3-Working with Integer Exponents
81. ANS:
w^{3}
PTS: 1 REF: Knowledge and Understanding OBJ: 7.4-Working with Rational Exponents
82. ANS:
$256^{\frac{3}{4}}$
PTS: 1 REF: Knowledge and Understanding
OBJ: 7.4 - Working with Rational Exponents
83. ANS:
$\sqrt[3]{216^{2}}$
PTS: 1 REF: Knowledge and Understanding
OBJ: 7.4 - Working with Rational Exponents
84. ANS:
$V(t)=V_{0}(1.0285)^{t}$
PTS: 1 REF: Communication
OBJ: 7.6 - Solving Problems Involving Exponential Growth
85. ANS:

4 bounces
PTS: 1 REF: Thinking OBJ: 7.7-Problems Involving Exponential Decay
86. ANS:
18.31\%

PTS: 1 REF: Application OBJ: 7.7-Problems Involving Exponential Decay
87. ANS:
\$991.41
PTS: 1 REF: Knowledge and Understanding
OBJ: 8.1-Investigating Interest and Rates of Change
88. ANS:
\$8555.83
PTS: 1 REF: Application OBJ: 8.2-Compound Interest: Determining Future Value
89. ANS:
\$7498.23
PTS: 1 REF: Application OBJ: 8.2-Compound Interest: Determining Future Value
90. ANS:
\$1063.69
PTS: 1
REF: Application OBJ: 8.5 - Regular Annuities: Determining Future Value
91. ANS:
\$3160.63
PTS: 1 REF: Knowledge and Understanding
OBJ: 8.6 - Regular Annuities: Determining Present Value

PROBLEM

92. ANS:
a) $6 x^{2}-4 x+3 x y-2 y$

$$
\begin{aligned}
& \left(6 x^{2}-4 x\right)+(3 x y-2 y) \\
& 2 x(3 x-2)+y(3 x-2) \\
& (3 x-2)(2 x+y)
\end{aligned}
$$

b) Grouping the terms will allow you to see the common factor.

PTS: 1 REF: Communication
OBJ: 2.2 - Factoring Polynomials: Common Factoring
93. ANS:
$\left(0^{\circ}, 0\right),\left(90^{\circ}, 1\right),\left(180^{\circ}, 0\right),\left(270^{\circ},-1\right),\left(360^{\circ}, 0\right)$

PTS: 1
REF: Thinking
OBJ: 6.3 - Investigating the Sine Function
94. ANS:

The graph should transform $\sin x$ by translating up 2 units and to the right 45°.

PTS: 1
REF: Thinking
OBJ: 6.5-Transformations of the Sine Function: $f(x)=\sin (x-c)$ and $f(x)=\sin x+d$
95. ANS:

The graph retains the same x-intercepts as $\sin x$, but the amplitude is 2 and the function is reflected over the x-axis.

PTS: 1
REF: Thinking
OBJ: 6.6-More Transformations of $\sin \mathrm{x}: \mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}$

