1.3: The Sine Law

What happens if we don't have a right-angled triangle?

Draw a triangle that satisfies the following:
Acute Triangle $A B C$ with $\angle A=60^{\circ}, \angle C=50^{\circ}$, and side $A B$ is 10 cm .

Can we, using primary trig ratios solve this triangle?
What other information is needed in order to solve this triangle?
(Geometers Sketchpad demonstration)
The Sine Law
\square
Now lets solve the above triangle using the sine law:

EXAMPLE \#1

In triangle $A B C$, given that $\angle B=48^{\circ}, \angle C=25^{\circ}$, and side a is 36 cm . Find the length of c and b correct to 1 decimal place. Include a sketch in your solution.

EXAMPLE \#2

Solve for the value of h in the following diagram:

EXAMPLE \#3

In triangle $A B C$, given that $\angle B=72^{\circ}$, side $c=12 \mathrm{~cm}$ and side $b=32 \mathrm{~cm}$, find $\angle C$ to the nearest degree.

