There are many important applications of *exponential growth* in the fields of science and finance:

- describing the growth of a *bacterial culture*
- calculation of *compound interest*
- > population growth

Exponential Growth

Exponential Growth is modeled by an *exponential function* with the base b, where b > 1.

<u>Recall</u>: A function $f(x) = a(b)^x$ for b > 1 is called an <u>increasing</u> function.

Graph of an	increasing	exponential	function.
-------------	------------	-------------	-----------

<u>Notes</u> : The value of a is the y-intercept since		
$f(0) = a(b)^{0}$ if $\mathbf{x} = 0$, then $= a(1)$ = a		
This can also be interpreted as the <u>initial</u> <u>value</u> for functions whose <u>domain</u> is $x \ge 0$.		

The power of exponential growth:

Suppose you're given a choice between two "gifts". The first is \$10 000 000 cash. The second is an account that starts with \$2 and doubles each day for exactly 24 days. Which should you take?

In general, *Exponential Growth* can be modeled by the formula... $P(n) = P_o(1+r)^n$, where...

 $P(n) \rightarrow$ represents the <u>final</u> amount after the <u>number of growth periods</u> *n*.

 $P_o \rightarrow$ represents the <u>initial</u> amount

 $r \rightarrow$ represents the <u>rate</u> of growth (represented as a <u>decimal</u> or a <u>fraction</u>)

Example of Exponential Growth Problem

A biologist grows a colony of bacteria in a Petri dish and finds that after <u>one day</u>, the quantity has increased by 50%. After <u>two days</u> it has increased again by 50% of the quantity noted after day one. The biologist is uncertain as to the exact **initial number of bacteria**. Determine an algebraic formula that can be used to describe the quantity after 10 days. After n days.

Solution: Let P_o represent the initial number of bacteria

Let's break this down into percentages...

The <u>initial amount</u> is represented as*P*_o

Write a formula for the given situation:

Population in a small town is predicted to grow at a rate of 8% per year. Currently there is 25 234 people in town. Determine a formula to calculate the population in 20 years.

Homework:

- 1. A population increases at a rate of 8.2%. What is the growth factor?
- 2. A population has a growth factor of 1.23. What is the rate of growth as a percent?
- 3. There are 1200 bacteria in a culture. Write an equation to represent the growth of the bacteria n days from now under each given condition:
 - a) The population doubles every day.
 - b) The population grows by a factor of 5 every day.
 - c) The population increases at a rate of 1.05% per day.
- 4. Ontario's population in 1991 was approximately 10.1 million. The population has been increasing at a rate of 1.25% per year.
 - a) Write an equation to represent the population of Ontario as a function of the number of years since 1991. Define your variables.
 - b) Suppose the population continues to grow at this rate. Estimate the population in 2041.
- 5. A strain of bacteria doubles every half hour. Suppose there were 4000 bacteria when the timing began.
 - a) Write an equation to model the population growth. Define your variables.
 - b) How many bacteria would be present in 4 hours time?
 - c) How many bacteria were present 2 hours ago?
- 6. A rare stamp was worth \$65 in 1995. It was predicted to grow in value at a rate of 8% per year. At this growth rate, what would be the value of the stamp in 2020?
- 7. The table below shows the population of a town from 1993 to 1999.

Year	1993	1994	1995	1996	1997	1998	1999
Pop'n	500 000	525 000	551 250	578 813	607 754	638 142	670 049

- a) Does the data represent exponential growth? Explain.
- b) What is the growth factor (to 2 decimal places)? At what annual rate is the population increasing at?
- c) Write an equation to model the population, P, as a function of the number or years, n, since 1993.
- d) Predict the population of the town in 2010. What assumption are you making?
- 8. When a sheet of paper is folded in half, 2 layers are formed. If it is folded in half again, 4 layers are formed.
 - a) Complete the table below for as many times as you can physically fold the paper.

# of folds	# of layers
0	1

- b) Write an equation to model the number of layers of paper as a function of the number of times the paper is folded.
- c) If the paper could be folded in half 30 times, how many layers would there be?