1.8 Radicals and Radical Operations

Numbers like $\sqrt{18}, \sqrt{28}$, and $\sqrt{48}$ are called radical numbers.

Definition: a radical is the positive square root of a number.

Most radicals are irrational numbers, meaning that if you calculate them they are decimal numbers that neither terminate nor repeat.

Ex. $\sqrt{7} \cong 2.645751311 \ldots$

Mixed Radicals: Have a coefficient outside of the radical. Ex: $2 \sqrt{3}$

Adding and Subtracting Radicals

Like numbers and polynomials, radicals can be combined and simplified using algebra. Radicals follow similar rules as collecting "like terms".

$\sqrt{3}+\sqrt{3}=$ \qquad
$5 \sqrt{5}-\sqrt{5}=$ \qquad
Only "like radicals" can be subtracted or added. (So $3 \sqrt{5}+2 \sqrt{7}$ cannot be simplified)

Multiplying and Dividing Radicals

When multiplying 2 radicals together, multiply the values under the $\sqrt{ }$ symbol.
\square
Ex: $\sqrt{4} \sqrt{9}=$
Ex: $\sqrt{5} \sqrt{5}=$

Ex: $\sqrt{50} \sqrt{10}=$
Ex: $(\sqrt{-7})(\sqrt{-7})=$

Division can also be done "inside" the radical.
\square
Ex: $\frac{\sqrt{12}}{\sqrt{3}}=$
Ex: $\frac{\sqrt{180}}{\sqrt{10}}=$

Mixed Radicals can be multiplied and divided in the same way.

Ex. $3 \sqrt{50} * 4 \sqrt{10}=$

Ex: $(2 \sqrt{4})(5 \sqrt{9})=$
Ex: $(-\sqrt{5})(7 \sqrt{6})=$

