<u>6.3: Rational Exponents: $a^{\frac{m}{n}}$ </u>

Warm Up:

Simplify the following:

$$#15. \ \frac{1}{2x^{-5}} \qquad = \qquad \qquad \#26. \ \frac{8}{m^{-2}} =$$

- #28. $\left(\frac{3}{x^2}\right)^{-2} =$ #6. $8^3 * 0^{-2} =$
- #8. $(-3^{-2})^{-1} =$ #23. $(-10a)^0 =$

When you have a fraction as an exponent, a rational number, we call that a rational exponent. They are usually in the form:

$$a^{\frac{m}{n}}$$

Common rational exponents:

$$a^{\frac{1}{2}} = _$$

$$a^{\frac{1}{4}} = ___ \rightarrow$$

Sometimes the numerator of the fraction is not 1. It is often helpful to split fractions into the following forms:

$$a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m \text{ or } a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}}$$

MCF 3MI **Example 1:** Simplify by splitting up the fraction in the exponent. a) $64^{\frac{2}{3}}$ b) $8^{\frac{4}{3}}$

Going back and forth from radical to exponential form can be quite useful sometimes. Here are some examples.

Example 2: Write in exponential form a) $\sqrt{14} =$ b) $\sqrt[3]{5} =$ c) $\sqrt[4]{9} =$ d) $(\sqrt{5})^3 =$ e) $\sqrt[5]{(-6)^3} =$

Example 3:	Write in radical form		
a) $12^{\frac{1}{2}} =$	b)	$-9^{\frac{1}{4}}$	=

c)
$$7^{\frac{3}{2}} =$$
 d) $19^{\frac{5}{7}} =$

Using these skills, we can make questions more efficient if we simplify the exponents first. Especially when dealing with variables.

Example 4: Simplify

- a) $\sqrt{16x^{16}} =$
- b) $\sqrt{4x^4y^2} =$
- c) $12^{\frac{2}{3}} =$
- d) $\sqrt[5]{6^5} =$