## 6.3: Rational Exponents: $a^{\frac{m}{n}}$

## Warm Up:

Simplify the following:
\#15. $\frac{1}{2 x^{-5}} \quad=\quad$ \#26. $\frac{8}{m^{-2}}=$
\#28. $\left(\frac{3}{x^{2}}\right)^{-2}=$
\#6. $8^{3} * 0^{-2}=$
\#8. $\left(-3^{-2}\right)^{-1}=$
\#23. $(-10 a)^{0}=$

When you have a fraction as an exponent, a rational number, we call that a rational exponent. They are usually in the form:

$$
a^{\frac{m}{n}}
$$

Common rational exponents:
$a^{\frac{1}{2}}=$ $\qquad$ $\rightarrow$
$a^{\frac{1}{3}}=$ $\qquad$ $\rightarrow$
$a^{\frac{1}{4}}=$ $\qquad$ $\rightarrow$

Sometimes the numerator of the fraction is not 1. It is often helpful to split fractions into the following forms:

$$
a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m} \quad \text { or } a^{\frac{m}{n}}=\left(a^{m}\right)^{\frac{1}{n}}
$$

MCF 3MI
Example 1: Simplify by splitting up the fraction in the exponent.
a) $64^{\frac{2}{3}}$
b) $8^{\frac{4}{3}}$

Going back and forth from radical to exponential form can be quite useful sometimes. Here are some examples.

Example 2: Write in exponential form
a) $\sqrt{14}=$
b) $\sqrt[3]{5}=$
c) $\sqrt[4]{9}=$
d) $(\sqrt{5})^{3}=$
e) $\sqrt[5]{(-6)^{3}}=$

Example 3: Write in radical form
a) $12^{\frac{1}{2}}=$
b) $-9^{\frac{1}{4}}=$
c) $7^{\frac{3}{2}}=$
d) $19^{\frac{5}{7}}=$

Using these skills, we can make questions more efficient if we simplify the exponents first. Especially when dealing with variables.

Example 4: Simplify
a) $\sqrt{16 x^{16}}=$
b) $\sqrt{4 x^{4} y^{2}}=$
c) $12^{\frac{2}{3}}=$
d) $\sqrt[5]{6^{5}}=$

