5.8: Maxima/Minima Problems from Standard Form

For many problems, it is desirable to find the largest or smallest outcome. For example, a manufacturer may want to know when the largest profit is obtained in a process or when the smallest amount of raw material is used. By setting the problems up using a quadratic function, the largest, or smallest value is found by completing the square and finding the vertex.

Example \#1: Two numbers have a difference pf 8. Find the numbers if their product is a minimum.

Example \#2: The sum of a number and 3 times another number is 18 . Find the number if the product is a maximum.

Example \#3: A rectangular lot is bounded on one side by a river and on the other 3 sides by 80 m of fencing. Find the dimensions of the lot with the largest area.

Example \#4: A bullet is fired vertically at $80 \mathrm{~m} / \mathrm{s}$. Its height above the ground is given by $h=80 t-5 t^{2}$. Find the maximum height of the bullet and when it occurs.

Example \#5: Sam hits a pop-up. The height h in meters of the baseball is given by $h=1.2+20 t-$ $5 t^{2}$, where t is in seconds. What is the maximum height of the ball? If it is caught at the same height that it was hit, how long was the ball in the air?

Example \#6: Lemon Motors monthly revenue from car sales is given by $R=-20 x^{2}+400 x+$ 48000 , where x represents the markup above factory price in multiples of $\$ 20$. Find the markup needed for maximum revenue.

Practice Problems:

Demonstrate that the vertex obtained by completing the square and by factoring are identical. Round answers to 3 decimal places.
a) $2 x^{2}+13 x+6$
b) $6 x^{2}-21 x-12$
c) $-2 x^{2}-7 x-3$
d) $-4 x^{2}+15 x-9$
e) $2 x^{2}+17 x+35$

