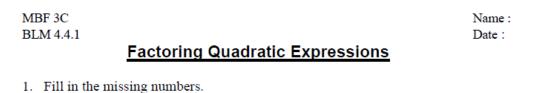
## MBF 3C: UNIT 5 – Factoring and Expanding with Quadratics Lesson 7: Zeros and the Axis of Symmetry

MBF3C BLM 3.5.3 Name: Date:

## More about the parabola!

1. Fill in the table for each parabola equation. BE CAREFUL! Some information is not given by certain equations!

| Equation     | y = 2(x - 5)(x + 9) | $y = -(x + 2)^2 + 6$ | y = 4(x+2)(x + 8) |
|--------------|---------------------|----------------------|-------------------|
| Zeros        |                     |                      |                   |
| Direction of |                     |                      |                   |
| Opening      |                     |                      |                   |
| Axis of      |                     |                      |                   |
| Symmetry     |                     |                      |                   |
| Step Pattern |                     |                      |                   |
| Vertex       |                     |                      |                   |


- 2. A cannonball is shot into the air. Its height can be described by the equation h = -3(t 1)(t 9) where h is height in feet and t is time in seconds.
- (a) What are the zeroes of this relation? \_\_\_\_\_ and \_\_\_\_\_
- (b) What do the zeroes mean in this situation?
- (c) What is the axis of symmetry and what does it represent?
- (d) Use the axis of symmetry to find the vertex and explain what the vertex means for the cannonball.
- 3. The equation P = -0.5(n 500)(n 10) describes a company's profit P, based on how many units are sold, n. What are the break even points of the company, and how many units must be sold to make a maximum profit?

## MBF 3C: UNIT 5 – Factoring and Expanding with Quadratics Lesson 7: Zeros and the Axis of Symmetry

MBF3C BLM3.6.1

|                                                          | D 11 D          | 1                                                |                                                           |            |        |
|----------------------------------------------------------|-----------------|--------------------------------------------------|-----------------------------------------------------------|------------|--------|
| Questíon 1                                               | Building Reward |                                                  | Questíon 2                                                | Building I |        |
|                                                          | S: 2            | M: 3                                             |                                                           | S: 2       | M: 3   |
| What are the zeroes of<br>y = (x - 4)(x + 8) ?           |                 | What are the zeroes of<br>y = -2(x - 5)(x + 17)? |                                                           |            |        |
| Questíon 3                                               | Building R      | eward                                            | Questíon 4                                                | Building   | Reward |
|                                                          | S: 3            | M: 5                                             | <b>~</b>                                                  | S: 2       | M: 3   |
| What is the axis of symmetry of<br>y = (x - 5)(x + 13) ? |                 |                                                  | What is the axis of symmetry of<br>$y = 3(x - 4)^2 + 8$ ? |            |        |
| Questíon 5                                               | Building R      |                                                  | Questíon 6                                                | Building I |        |
| •                                                        | S: 10 N         | M: 10                                            | ~                                                         | S: 7       | M: 7   |
| What are the zeroes of<br>$y = 2(x + 3)^2 - 8$ ?         |                 |                                                  | What is the vertex of<br>y = (x - 4)(x + 8) ?             |            |        |

## MBF 3C: UNIT 5 – Factoring and Expanding with Quadratics Lesson 7: Zeros and the Axis of Symmetry



- (a)  $(x-3)(x+4) = x^2 + x +$
- (b)  $(x-6)(x+2) = x^2 + \_\_x + \_\_$
- (c)  $(x + \underline{\phantom{x}})(x + 2) = x^2 + 5x + 6$
- (d)  $(x+3)(x+\_) = x^2 6x 27$
- (e)  $(x + \underline{\phantom{x}})(x + \underline{\phantom{x}}) = x^2 + 9x + 14$
- 2. Factor each expression.

| (a) $x^2 - 3x - 4$  | (b) $x^2 - 11x + 28$ | (c) $x^2 + 7x + 12$ |
|---------------------|----------------------|---------------------|
|                     |                      |                     |
|                     |                      |                     |
| (d) $x^2 - 4x - 32$ | (e) $x^2 - 13x + 42$ | (f) $x^2 - 4x + 4$  |
|                     |                      |                     |
|                     |                      |                     |
|                     |                      |                     |

3. Connecting to prior lessons, by factoring standard form, we can change a parabola's equation into factored form!

Given the equation:  $y = x^2 + 8x + 15$ 

- (a) state the y intercept \_\_\_\_\_
- (b) write the expression in factored form y = \_\_\_\_\_
- (c) the zeros of the parabola are \_\_\_\_\_ and \_\_\_\_\_
- (e) the axis of symmetry of the parabola is \_\_\_\_\_