# MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics Lesson 6: Factored Form and Zeros 

MBF3C

Name:
Date:

## Exploring the Factored Form of a Parabola

In this investigation you will graph different parabolas and determine the link between the equation in "factored form" and the zeroes of the parabola.

You will need to be able to determine the following about a parabola:
The zeroes
The direction of opening
The axis of symmetry
The step pattern

## TECHNOLOGY OPTION

To help you graph and plot the parabolas, enter the equation in the $\mathrm{Y}=$ screen on your TI - 83 graphing calculator, press graph to see the graph and press 2 nd graph to see a table of values for the parabola

Parabola Investigation \#1


# MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics Lesson 6: Factored Form and Zeros 

MBF3C
Parabola Investigation \#2
BLM3.5.1


Fill in the following information about the parabola:


## Parabola Investigation \#3



# MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics <br> Lesson 6: Factored Form and Zeros 

MBF3C
BLM3.5.2

Name:
Date:

Factored Form of a Parabola
Factored Form of a Quadratic Relation:

This controls the direction and opening as well as the step pattern (same as in vertex form!)


The opposites of these numbers are the zeroes of the parabola. In this case, the parabola would have zeroes of $s$ and $t$. (or officially, (s, 0) and ( $\mathrm{t}, \mathrm{0}$ )

Practice: Fill in the table for each parabola equation.

| Equation | $y=3(x-3)(x+5)$ | $y=-(x+2)(x+6)$ | $y=x(x+8)$ |
| :---: | :--- | :--- | :--- |
| Zeros |  |  |  |
| Direction of <br> Opening |  |  |  |
| Axis of <br> Symmetry |  |  |  |
| Step Pattern |  |  |  |

Practice: Find the vertex of the middle parabola, and then sketch it.


