5.5: QUADRATIC FUNCTIONS IN FACTORED FORM

Is the relation $y=2(x+4)(x-3)$ quadratic?

What are the x -intercepts (i.e. zeros, roots) of the relation?

What do you notice about the zeros and the original equation?

The factored form of a quadratic relation looks like $\mathbf{y}=\mathbf{a}(\mathbf{x}-\mathbf{s})(\mathbf{x}-\mathbf{t})$.

- The direction of opening is determined by the value of "a"
- The zeros are $\mathrm{x}=\mathrm{s}$ and $\mathrm{x}=\mathrm{t}$
- The x-coordinate of the vertex can be determined using the formula $\frac{s+t}{2}$ since the vertex lies on the axis of symmetry which is halfway between the two zeros.
- To get the y-coordinate of the vertex, substitute the x-coordinate into the equation of the quadratic relation.

Examples:

For each relation, write in proper factored form (if not already), determine the direction of opening, the zeros, the vertex, the y-intercept, and sketch the graph.
a) $y=(x+3)(x-4)$
b) $y=3(x+1)(x-3)$
c) $y=(3+x)(2-x)$

WRITING EQUATIONS FOR PARABOLAS IN FACTORED FORM:

To write an equation of a parabola in factored form you need to know the zeros and one other point on the parabola.

Examples: Find the equation (in factored form) for each parabola.
a) zeros are -3 and 5 , the y-intercept is -75
b) zeros are 3 and 7, maximum value is 6

