MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics **Lesson 5: Factoring – part 2**

Factoring Trinomials of the form $y = ax^2 + bx + c$, where a is a common factor.

This time we will take the common factor out FIRST, then continue to factor like we did last lesson.

Examples: Factor Fully.

1)
$$-4x^2 + 24x + 108$$
 2) $5x^2 - 20x + 20$ 3) $y = -3^{x^2} + 6x + 9$

2)
$$5x^2 - 20x + 20$$

3)
$$y = -3^{x^2} + 6x + 9$$

Factoring Quadratic Expressions

1. Fill in the missing numbers.

(a)
$$(x-3)(x+4) = x^2 + x +$$

(b)
$$(x-6)(x+2) = x^2 + \underline{\qquad} x + \underline{\qquad}$$

(c)
$$(x + \underline{\hspace{1cm}})(x + 2) = x^2 + 5x + 6$$

(d)
$$(x+3)(x+) = x^2 - 6x - 27$$

(e)
$$(x + ___)(x + ___) = x^2 + 9x + 14$$

2. Factor each expression.

(a) $x^2 - 3x - 4$	(b) $x^2 - 11x + 28$	(c) $x^2 + 7x + 12$
(d) 11 ² 411 22	(a) $v^2 - 12v + 42$	(f) $x^2 - 4x + 4$
(d) $x^2 - 4x - 32$	(e) $x^2 - 13x + 42$	(1) X - 4X + 4

3. Connecting to prior lessons, by factoring standard form, we can change a parabola's equation into factored form!

Given the equation: $y = x^2 + 8x + 15$

- (b) write the expression in factored form y =____
- (c) the zeros of the parabola are _____ and ____
- (d) the vertex of the parabola is _____ (hint: the vertex is located halfway between the zeros)
- (e) the axis of symmetry of the parabola is _____