MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics Lesson 5: Factoring - part 2

Factoring Trinomials of the form $y=a x^{2}+b x+c$, where a is a common factor.

This time we will take the common factor out FIRST, then continue to factor like we did last lesson.

Examples: Factor Fully.

1) $-4 x^{2}+24 x+108$
2) $5 x^{2}-20 x+20$
3) $y=-3^{x 2}+6 x+9$

MBF 3C
BLM 4.4.1

Name :
Date :

Factoring Quadratic Expressions

1. Fill in the missing numbers.
(a) $(x-3)(x+4)=x^{2}+x+$ \qquad
(b) $(x-6)(x+2)=x^{2}+$ \qquad x + \qquad
(c) $\quad(x+\quad)(x+2)=x^{2}+5 x+6$
(d) $\quad(x+3)(x+\ldots)=x^{2}-6 x-27$
(e) $\quad(x+\ldots)(x+\ldots)=x^{2}+9 x+14$
2. Factor each expression.

(a) $x^{2}-3 x-4$	(b) $x^{2}-11 x+28$	(c) $x^{2}+7 x+12$
(d) $x^{2}-4 x-32$	(e) $x^{2}-13 x+42$	(f) $x^{2}-4 x+4$

3. Connecting to prior lessons, by factoring standard form, we can change a parabola's equation into factored form!

Given the equation: $y=x^{2}+8 x+15$
(a) state the y - intercept \qquad
(b) write the expression in factored form $\mathrm{y}=$ \qquad
(c) the zeros of the parabola are \qquad and \qquad
(d) the vertex of the parabola is \qquad
(hint: the vertex is located halfway between the zeros)
(e) the axis of symmetry of the parabola is \qquad

