5.3: Graphing Quadratic Functions – Vertex Form

Using the STEP PATTERN to graph QFs:

Graphing a QF in vertex form can be drawn using transformations of the parent graph, $y = x^2$.

 $y = x^2$ and the step pattern. Complete the TOV for $y = x^2$ and join the points into i) a smooth curve.

Starting at the vertex (0, 0), you can find other points on the parabola by using the STEP PATTERN.

STEP PATTERN (for $y = x^2$) : Over 1, up 1. Over 1 up 3. Over 1 up 5. Over 1, up 7...etc.

(Hint: think 1, 3, 5, 7, ...)

ii) Find the step pattern for the following graphs. a. $y = 2x^2$

b.
$$y = -3x^2$$

c.
$$y = 1.5x^2$$

STEP PATTERN (for all in the form $y = ax^2$): Think 1a, 3a, 5a, 7a, ...

Finding the Vertex in Vertex Form:

Equations in vertex form look like the following. $y = a(x - h)^2 + k$

- "h" is the x value of the vertex
- "k" is the y-value of the vertex
- (h, k) is the vertex

Find the vertex for the following:

- a) $y = (x 4)^2 + 5$ _____
- b) $y = 5(x-1)^2$ c) $y = -8(x+6)^2 - 3$
- d) $y = \frac{1}{4}(x)^2 2$