5.3: Graphing Quadratic Functions - Vertex Form

Using the STEP PATTERN to graph QFs:

Graphing a QF in vertex form can be drawn using transformations of the parent graph, $y=x^{2}$.
i) $\quad y=x^{2}$ and the step pattern. Complete the TOV for $y=x^{2}$ and join the points into a smooth curve.

Starting at the vertex $(0,0)$, you can find other points on the parabola by using the STEP PATTERN.

STEP PATTERN (for $y=x^{2}$): Over 1, up 1. Over 1 up 3. Over 1 up 5. Over 1, up $7 \ldots$...etc.
(Hint: think 1, 3, 5, 7, ...)
ii) Find the step pattern for the following graphs.
a. $y=2 x^{2}$
b. $y=-3 x^{2}$
c. $y=1.5 x^{2}$

STEP PATTERN (for all in the form $y=a x^{2}$): Think 1a, 3a, 5a, 7a, ...

Finding the Vertex in Vertex Form:

Equations in vertex form look like the following. $y=a(x-h)^{2}+k$

- " h " is the x value of the vertex
- " k " is the y-value of the vertex
- (h, k) is the vertex

Find the vertex for the following:
a) $y=(x-4)^{2}+5$ \qquad
b) $y=5(x-1)^{2}$
c) $y=-8(x+6)^{2}-3$ \qquad
d) $y=\frac{1}{4}(x)^{2}-2$

