MBF 3C: UNIT 5 – Factoring and Expanding with Quadratics Lesson 2: Converting to Standard Form

Standard Form of a Parabola

Standard Form of a Quadratic Relation:

This controls the direction and opening as well as the step pattern (same as in vertex form and factored form!)

This number is the y – intercept! In this case, the y – intercept would be

(0, c)

 $y = ax^{2} + bx + c$

Getting to Standard Form...

In order to get to standard form, some algebra is required. Let's review what we know about polynomial multiplication:

Examples: Expand.

$$(x+3)^2$$

$$3(x-4)^2$$

$$3(x-4)(x+2)$$

Practice: Expand the following expressions.

1.	(x-5)(x+2)	2.		3.	2(x-3)(x+1)
4.	$2(x+4)^2 - 3$	5.	3(x+2)(x-1)	6.	$-(x-3)^2 - 2$

1. Match each expression in the left column with one in the right column.

(Hint: simplify)

	(Time: Simping)		
1.	2x(x-3)	A.	2x + 8
2.	4x - 2(x - 4)	B.	$x^2 + 3 - (3 + 6x - x^2)$
-:	M 2(M 1)] .	n v o (o v on n)
		1	

3.
$$3(x^2-4x+2)$$
 C. $x(x-6)+2(x^2-3x+1)$

- 2. a) Expand to express $y = 2(x-3)^2 2$ in standard form.
 - b) Expand each of the following and compare with the equation found in a).

$$y = -(x-2)(x-4)$$
 $y = 3(x-4)(x+2)$

$$y = 2(x-4)(x-2)$$
 $y = 2(x-3)(x+1)$

- c) By comparing the expanded form of the equations in 2a and 2b find the two quadratics that represent the same parabola.
- 3. List all the information you can about the parabola $y = 2x^2 4x 6$ and then find its match (in another form, of course) in question #2