MBF 3C: UNIT 5 - Factoring and Expanding with Quadratics
 Lesson 2: Converting to Standard Form

Standard Form of a Parabola

Standard Form of a Quadratic Relation:

This controls the direction and opening as well as the step pattern (same as in vertex form and factored form!)

This number is the y-intercept! In this case, the y - intercept would be ($0, \mathrm{c}$)

Getting to Standard Form...

In order to get to standard form, some algebra is required. Let's review what we know about polynomial multiplication:

Examples: Expand.
$(x+3)^{2}$
$3(x-4)^{2}$
$3(x-4)(x+2)$

Practice: Expand the following expressions.

1.	$(\mathrm{x}-5)(\mathrm{x}+2)$	2.	$2(\mathrm{x}-1)^{2}+3$	3.	$2(\mathrm{x}-3)(\mathrm{x}+1)$
4.	$2(\mathrm{x}+4)^{2}-3$	5.	$3(\mathrm{x}+2)(\mathrm{x}-1)$	6.	$-(\mathrm{x}-3)^{2}-2$

1. Match each expression in the left column with one in the right column.
(Hint: simplify)

1.	$2 \mathrm{x}(\mathrm{x}-3)$	A. $\quad 2 \mathrm{x}+8$
2.	$4 \mathrm{x}-2(\mathrm{x}-4)$	B. $\mathrm{x}^{2}+3-\left(3+6 \mathrm{x}-\mathrm{x}^{2}\right)$
3.	$3\left(\mathrm{x}^{2}-4 \mathrm{x}+2\right)$	C. $\mathrm{x}(\mathrm{x}-6)+2\left(\mathrm{x}^{2}-3 \mathrm{x}+1\right)$

2. a) Expand to express $y=2(x-3)^{2}-2$ in standard form.
b) Expand each of the following and compare with the equation found in a).

$$
\begin{array}{ll}
y=-(x-2)(x-4) & y=3(x-4)(x+2) \\
y=2(x-4)(x-2) & y=2(x-3)(x+1)
\end{array}
$$

c) By comparing the expanded form of the equations in 2 a and 2 b find the two quadratics that represent the same parabola.
3. List all the information you can about the parabola $y=2 x^{2}-4 x-6$ and then find its match (in another form, of course) in question \#2

