Zeros of a Quadratic - The Discriminant

Recall that the "zeros" of a <u>quadratic function</u> ($y = ax^2 + bx + c$) refer to the x-intercepts of the graph.

Zeros are the *x*-values that solve a <u>quadratic equation</u> $(ax^2 + bx + c = 0)$. The method used to determine <u>how many zeros</u> a quadratic function has depends on the *form* of the equation.

1. Factored Form - y = a(x-r)(x-s)

y = 3(x-4)(x+2)	solving for \boldsymbol{x} produces $x = \underline{\qquad}$, $x = \underline{\qquad}$	Z	eros
f(x) = -2x(x-5)	solving for \boldsymbol{x} produces $x = _$, $x = _$.: Z	eros
$y = 2(x+4)^2$	solving for \boldsymbol{x} produces $x = $, $x = $.:Z	eros

2. **Vertex Form -** $y = a(x-h)^2 + k$

To determine the number of zero's... find the **vertex**, determine the **direction of opening** and **sketch** (if necessary).

$$y = 2(x-4)^{2} - 3 \qquad \dots \text{ Vertex } (4, -3); a = 2$$

$$\Rightarrow \text{ The vertex is } \underline{\text{below}} \text{ the x-axis; parabola opens} \qquad \therefore \qquad \underline{} \text{ zeros}$$

$$y = -2(x-4)^{2} - 3 \qquad \dots \text{ Vertex } (4, -3); a = -2$$

 \Rightarrow The vertex is **<u>below</u>** the x-axis; parabola opens _____ zeros

$$y = 2(x+4)^{2}$$
... Vertex (4, 0); a = 2
 \Rightarrow The vertex is on the x-axis; parabola opens _____ zeros

3. **Standard Form** - $y = ax^2 + bx + c$

To determine the <u>number of zeros</u> we can use the <u>quadratic formula</u>... $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

OR

Use the graphing calculator to **<u>sketch</u>** the parabola.

Equation	Roots	Sketch
$4x^2 - 2x - 3 = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	×
$5x^2 - 12x + 9 = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	x
$x^2 - 2x + 1 = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	×