4.2: The Characteristics of a Function

A relation is a set of ordered pairs. These can be represented in various ways.

Examples of Relations:

a) $\{(1,2),(5,3),(9,4),(7,1)\}$
...as a mapping diagram

b) $\{(1,3),(4,2),(3,2),(6,5)\}$ \ldots as a table of values

\mathbf{x}	\mathbf{y}
1	3
3	2
4	2
6	5

c) $\{(1,4),(3,2),(5,4),(3,1)\}$
\ldots as a scatter plot

The DOMAIN is the set of first elements of the ordered pairs (the set of distinct \mathbf{x} values)
The RANGE is the set of second elements of the ordered pairs (the set of distinct \mathbf{y} values) (see pg 7 of the textbook for alternate definitions)

For each example above we can write the Domain and Range using SET NOTATION...

Example a) has...Domain $=\{$	$\}$	and	Range $=\{$	$\}$
Example b) has...Domain $=\{$	$\}$	and	Range $=\{$	$\}$
Example c) has...Domain $=\{$	$\}$	and	Range $=\{$	$\}$

A FUNCTION is a relation in which each value in the domain corresponds to exactly ONE element of range. It can also be thought of as a rule that associates each x value with only ONE y-value.
Note: More than one x-value can correspond to the same y-value.

A relation is NOT a function if one x value has 2 different y-values associated with it.
In the examples above, example a) and b) are functions.

Example c) is not a function since the x-value 3 is associated with two y-values... $y=1$ and $y=2$
To visualize this, complete a MAPPING diagram for example c)

One other thing... since we are dealing with functions, but not all equations represent functions, we're going to use a special type of notation when using functions. It's called FUNCTION NOTATION!

Equation	Function Notation
$y=3 x+1$	$f(x)=3 x+1$
$y=3 t^{2}-2 t+1$	$g(t)=3 t^{2}-2 t+1$
$y=x^{3}-2 x^{2}+1$	$h(x)=x^{3}-2 x^{2}+1$
$y=t^{2}-21$	$v(t)=t^{2}-21$

Using function notation is similar to using equations involving \boldsymbol{x} and \boldsymbol{y} values. To find a \boldsymbol{y}-value given an \boldsymbol{x}-value simply requires substitution. Thus, we can write ordered pairs $(x, f(x))$ which are the same as (x, y).

Example 1: Find $f(2)$ if $f(x)=x^{2}-2 x+1$. (Here, we are looking for the " y-value" when $x=2$.)

Example 2: Given the function $g(x)=4 x-5$, find...
a) $2 g(-1)$
b) $g(a+2)$

