4.2: The Characteristics of a Function

A <u>relation</u> is a set of ordered pairs. These can be represented in various ways.

The **<u>DOMAIN</u>** is the set of <u>first elements</u> of the ordered pairs (the set of distinct **x values**)

The **<u>RANGE</u>** is the set of <u>second elements</u> of the ordered pairs (the set of distinct **y values**) (see pg 7 of the textbook for alternate definitions)

For each example above we can write the Domain and Range using **<u>SET NOTATION</u>**...

Example a) has Domain = {	}	and	Range = {	}
Example b) has Domain = {	}	and	Range = {	}
Example c) has Domain = {	}	and	Range = {	}

A <u>FUNCTION</u> is a relation in which each value in the *domain* corresponds to exactly <u>ONE</u> element of *range*. It can also be thought of as a **rule** that associates each x value with only <u>ONE</u> y-value. *Note*: More than one x-value can correspond to the same y-value.

A relation is **<u>NOT</u>** a function if *<u>one x value has 2 different y-values associated</u> with it.*

One other thing since we are dealing with functions	, but not all equations represent functions, we're going
to use a special type of notation when using functions.	It's called FUNCTION NOTATION !

Equation	Function Notation
y = 3x + 1	f(x) = 3x + 1
$y = 3t^2 - 2t + 1$	$g(t) = 3t^2 - 2t + 1$
$y = x^3 - 2x^2 + 1$	$h(x) = x^3 - 2x^2 + 1$
$y = t^2 - 21$	$v(t) = t^2 - 21$
	•

	\supset
" $f(x)$ " is read " $f of x$ " or	
" $f at x$ ". It represents	
the value of the function at	
the given independent	
variable.	

Using <u>function notation</u> is similar to using equations involving x and y values. To find a y-value given an x-value simply requires *substitution*. Thus, we can write ordered pairs (x, f(x)) which are the same as (x, y).

Example 1: Find f(2) if $f(x) = x^2 - 2x + 1$. (Here, we are looking for the "y-value" when x = 2.)

Example 2: Given the function g(x) = 4x - 5, find... a) 2g(-1) b) g(a + 2)