MBF3MI: UNIT 2 - Trigonometry

2.6: The Sine Law

Draw a triangle that satisfies the following:
Acute Triangle ABC with $<\mathrm{A}=60^{\circ}$, $\angle \mathrm{C}=50^{\circ}$, and side AB is 10 cm . How do we solve this if it doesn't have a right angle triangle?

Can we, using primary trig ratios solve this triangle?
What other information is needed in order to solve this triangle?

The Sine Law

EXAMPLE \#1

In triangle ABC , given that $\angle \mathrm{B}=48^{\circ}, \angle \mathrm{C}=25^{\circ}$, and side a is 36 cm . Find the length of c and b correct to 1 decimal place. Include a sketch in your solution.

EXAMPLE \#2

Solve for the value of h in the following diagram:

MBF3MI: UNIT 2 - Trigonometry

EXAMPLE \#3
In triangle $A B C$, given that $\angle B=72^{\circ}$, side $\mathrm{c}=12 \mathrm{~cm}$ and side $\mathrm{b}=32 \mathrm{~cm}$, find $<\mathrm{C}$ to the nearest degree.

MBF3MI: UNIT 2 - Trigonometry
EXAMPLE \#4: Find the height of the tree.

MBF3MI: UNIT 2 - Trigonometry
EXAMPLE \#5: A cable car stops part of the way across an 86 m wide gorge. The cable holding the car makes an angle of depression if 57° at one end ad an angle of depression of 40° at the other end. How long is the cable that holds the car? Round your answer to the nearest metre.

